

Generators, Light Towers, Compressors, and Heaters

Used Compressors Lancaster - Power is transferred into potential energy and stored as pressurized air inside of an air compressor. These machines rely on gasoline, diesel or electric motors to force air into a special storage tank, subsequently increasing the pressure. Once the tank reaches its' upper limit, the air compressor turns off, as the compressed air is held into the tank until needed. There are many applications that require compressed air. The tank depressurizes as the kinetic energy of the air is used. Once the lower limit is reached, the air compressor turns on again to start the pressurization process again. Positive Displacement Air Compressors There are a variety of air compression methods. There are two categories: roto-dynamic or positive-displacement. With positive-displacement models, compressors force air into a chamber that has decreased volume in order to compress the air. After maximum pressure is attained, a valve or port opens and the air is discharged into the outlet system from the compression chamber. There are different kinds of positive-displacement compressors including Vane Compressors, Piston-Type and Rotary Screw Compressors. Dynamic Displacement Air Compressors Axial compressors and centrifugal air compressors fall under the dynamic displacement air compressors. A rotating component discharges its' kinetic energy and it eventually converts into pressure energy. A spinning impeller generates centrifugal force, accelerating and decelerating contained air, creating pressurization. Air compressors create heat and need a method to dispose of the heat, typically with some kind of water or air cooling mechanism. Atmospheric changes are also taken into consideration during compressor cooling. Inlet temperature, the area of application, the power available from the compressor and the ambient temperature are all factors the equipment must take into consideration. Air Compressor Applications There are many uses for air compressors and they are used frequently in a variety of industries. Air compressors are used to provide pneumatic power to equipment such as air tools and jackhammers, to fill tires with air, to supply clean air with moderate pressure to divers and much more. Copious amounts of moderate pressure air are generated for numerous industrial applications. Types of Air Compressors The vast majority of air compressors are either the rotary screw kind, the rotary vane type or the reciprocating piston model. These air compressor models are utilized for portable and smaller applications. Air Compressor Pumps Oil-injected and oil-less are two specific types of air-compressor pumps. The oil-free system relies on more technical components; however, it lasts for less time in comparison to oil-lubed pumps and is more expensive. The system that functions without oil has been recognized with delivering better quality. Power Sources There are a variety of power sources that can be used alongside air compressors. Gas, electric and diesel-powered air compressors are among the most popular types. There are other models that have been created to rely on power-take-off, hydraulic ports or vehicle engines that are commonly used for mobile systems. Often, gas and diesel-powered models are used in remote places that do not have great electricity access. They need adequate ventilation for their gas exhaust and are quite noisy. Indoor applications including warehouses, production facilities, garages and workshops that offer easy access to electricity typically rely on electric-powered air compressors. Rotary-Screw Compressor One of the most sought after compressors is the rotary-screw compressor. This gas compressor requires a rotary type positive-displacement mechanism. These compressors are often used in industrial applications in place of piston compressors. They are popular for jobs that depend on highpressure air. Some common tools that rely on air compressors include impact wrenches and high-power air tools. Gas compression of a rotary-screw compressor offers a sweeping motion. This creates less pulsation compared to piston model compressors which can result in a less productive flow. Rotors are used by the rotary-screw compressors to make gas compression possible. Dry-running rotary-screw models use timing gears. These items ensure the perfect alignment of the male and female rotors. In oil-flooded rotary-screw compressors, the space between the rotors is lubricated. This serves as a hydraulic seal while simultaneously transferring mechanical energy between the rotors. Entering at the suction portion, gas travels through the

threads while the screws rotate; forcing the gas to pass through the compressor and exit through the screws ends. Overall success is effective when particular clearances are achieved regarding the sealing chamber of the compression cavities, the rotors and the helical rotors. Rotation at high speeds minimizes the ratio of a leaky flow rate versus an effective flow rate. Many applications including food processing plants, automated manufacturing facilities and other industrial job sites rely on rotary-screw compressors. Besides fixed units, there are mobile versions in tow-behind trailers that are powered with small diesel engines. Commonly called "construction compressors," these portable compression units are useful for road construction, pneumatic pumps, riveting tools, industrial paint systems and sandblasting jobs. Scroll Compressor Compressing air or refrigerant is made possible with a scroll compressor. It is popular with supercharging vehicles, in vacuum pumps and commonly used in air-conditioning. These compressors are used in a variety of places to replace reciprocating and traditional wobble-plate compressors. They are used in residential heat pumps, automotive air-conditioning units and other air-conditioning systems. This apparatus features dual interleaving scrolls that are responsible for pumping, compressing and pressurizing fluids including gases and liquids. Usually, one of the scrolls is fixed, while the second scroll is capable of orbiting with zero rotation. This motion traps and pumps the fluid between the scrolls. The compression movement occurs when the scrolls co-rotate with their rotation centers offset to create a motion akin to orbiting. Acting like a peristaltic pump, the Archimedean spiral is contained within flexible tubing variations' similar to a tube of toothpaste. Casings contain a lubricant to prevent exterior abrasion of the pump. The lubricant also dispels heat. The peristaltic pump is a great solution since there are no moving items contacting the fluid. Having no seals, glands or valves keeps this equipment easy to operate and quite inexpensive in maintenance. Compared to many other pump models, this tube or hose feature is relatively low cost.